316 research outputs found

    Editorial

    Get PDF

    On the Use of Gallic Acid as a Potential Natural Antioxidant and Ultraviolet Light Stabilizer in Cast-Extruded Bio-Based High-Density Polyethylene Films

    Get PDF
    This study originally explores the use of gallic acid (GA) as a natural additive in bio-based high-density polyethylene (bio-HDPE) formulations. Thus, bio-HDPE was first melt-compounded with two different loadings of GA, namely 0.3 and 0.8 parts per hundred resin (phr) of biopolymer, by twin-screw extrusion and thereafter shaped into films using a cast-roll machine. The resultant bio-HDPE films containing GA were characterized in terms of their mechanical, morphological, and thermal performance as well as ultraviolet (UV) light stability to evaluate their potential application in food packaging. The incorporation of 0.3 and 0.8 phr of GA reduced the mechanical ductility and crystallinity of bio-HDPE, but it positively contributed to delaying the onset oxidation temperature (OOT) by 36.5 °C and nearly 44 °C, respectively. Moreover, the oxidation induction time (OIT) of bio-HDPE, measured at 210 °C, was delayed for up to approximately 56 and 240 min, respectively. Furthermore, the UV light stability of the bio-HDPE films was remarkably improved, remaining stable for an exposure time of 10 h even at the lowest GA content. The addition of the natural antioxidant slightly induced a yellow color in the bio-HDPE films and it also reduced their transparency, although a high contact transparency level was maintained. This property can be desirable in some packaging materials for light protection, especially UV radiation, which causes lipid oxidation in food products. Therefore, GA can successfully improve the thermal resistance and UV light stability of green polyolefins and will potentially promote the use of natural additives for sustainable food packaging applications

    Estimación del punto “quasi isotrópico” de laminados de material compuesto a través de gráficos “carpet plot” con eLamX

    Full text link
    Este artículo docente muestra una metodología para llevar a cabo análisis de estructuras de laminados de material compuesto mediante un software freeware (eLamX) que aplica la teoría clásica de análisis de laminados. El artículo se centra en la utilidad de los gráficos "carpet plot" en la determinaciión del punto "quasi isotrópico" y así, pre-diseñar estructuras de laminados con el mismo comportamiento en todas las direcciones.Balart Gimeno, RA. (2015). Estimación del punto “quasi isotrópico” de laminados de material compuesto a través de gráficos “carpet plot” con eLamX. http://hdl.handle.net/10251/5195

    Interpretación de gráficos “carpet plot” para prediseño con laminados de material compuesto mediante eLamX

    Full text link
    Este artículo docente muestra una metodología para llevar a cabo análisis de estructuras de laminados de material compuesto mediante un software freewere (eLamX) que aplica la teoría clásica de análisis de laminados. El artículo se centra en la utilidad de estas herramientas en las fases de pre-diseño del material para posterior optimización con herramientas más avanzadas.Balart Gimeno, RA. (2015). Interpretación de gráficos “carpet plot” para prediseño con laminados de material compuesto mediante eLamX. http://hdl.handle.net/10251/5199

    Reinforcing capability of cellulose nanocrystals obtained from pine cones in a biodegradable poly(3-hydroxybutyrate)/poly(e-caprolactone) (PHB/PCL) thermoplastic blend

    Full text link
    [EN] In this work, different loads (3, 5 and 7 wt%) of pine cone cellulose nanocrystals (CNCs) were added to films of poly(3-hydroxybutyrate)/poly(epsilon-caprolactone) (PHB/PCL) blends with a composition of 75 wt% PHB and 25 wt % PCL (PHB75/PCL25). The films were obtained after solvent casting followed by melt compounding in an extruder and finally subjected to a thermocompression process. The influence of different CNCs loadings on the mechanical, thermal, optical, wettability and disintegration in controlled compost properties of the PHB75/PCL25 blend was discussed. Field emission scanning electron microscopy (FESEM) revealed the best dispersion of CNCs on the polymeric matrix was at a load of 3 wt%. Over this loading, CNCs aggregates were formed enhancing the films fragilization due to stress concentration phenomena. However, the addition of CNCs improved the optical properties of the PHB75/PCL25 films by increasing their transparency and accelerated the film disintegration in controlled soil conditions. In general, the blend with 3 wt% CNCs offers the best balanced properties in terms of mechanical, thermal, optical and wettability.This research was supported by the Ministry of Economy and Competitiveness MINECO through the gran number MAT2014-59242-C2-1-R. D. Garcia-Garcia wants to thank the Spanish Ministry of Education, Culture and Sports for the financial support through a FPU grant number FPU13/06011.Garcia-Garcia, D.; Balart, R.; Strömberg, E.; Moriana, R. (2018). Reinforcing capability of cellulose nanocrystals obtained from pine cones in a biodegradable poly(3-hydroxybutyrate)/poly(e-caprolactone) (PHB/PCL) thermoplastic blend. European Polymer Journal. 104:10-18. https://doi.org/10.1016/j.eurpolymj.2018.04.036S101810

    Effects of fibre orientation and content on the mechanical, dynamic mechanical and thermal expansion properties of multi-layered glass/carbon fibre-reinforced polymer composites

    Full text link
    Multi-layered glass and carbon-reinforced polymer composites may exhibit unique properties comparatively with the benchmark, proven they are being tailored bounded by several requirements. The paper herein approaches issues on the influence of the various contents and orientation of UD carbon fibre constitutive on the mechanical, dynamical and thermal expansion if embedded along with glass fibres in different stacking sequencing within an unsaturated polymer resin. The results show that the architectures with the highest content of carbon fibres (e.g. GF:CF(60:40) 0 and 90 ) provide the best tensile and flexural properties, and behave better under dynamical loading conditions and temperature variations, no matter the orientation directions. In addition, it was shown that a thorough understanding can be attained, with respect to the UD carbon fibre content, and different orientations influence on the overall composite material properties, taking into account the data retrieved from dynamical and thermal expansion runs.Luca Motoc, D.; Ferrándiz Bou, S.; Balart Gimeno, RA. (2015). Effects of fibre orientation and content on the mechanical, dynamic mechanical and thermal expansion properties of multi-layered glass/carbon fibre-reinforced polymer composites. Journal of Composite Materials. 49(10):1211-1221. doi:10.1177/0021998314532151S121112214910Bunsell, A. R., & Harris, B. (1974). Hybrid carbon and glass fibre composites. Composites, 5(4), 157-164. doi:10.1016/0010-4361(74)90107-4Summerscales, J., & Short, D. (1978). Carbon fibre and glass fibre hybrid reinforced plastics. Composites, 9(3), 157-166. doi:10.1016/0010-4361(78)90341-5Kretsis, G. (1987). A review of the tensile, compressive, flexural and shear properties of hybrid fibre-reinforced plastics. Composites, 18(1), 13-23. doi:10.1016/0010-4361(87)90003-6Fu, S.-Y., Lauke, B., Mäder, E., Yue, C.-Y., & Hu, X. (2000). Tensile properties of short-glass-fiber- and short-carbon-fiber-reinforced polypropylene composites. Composites Part A: Applied Science and Manufacturing, 31(10), 1117-1125. doi:10.1016/s1359-835x(00)00068-3Stevanović, M., & Sekulić, D. P. (2003). Macromechanical Characteristics Deduced from Three-Point Flexure Tests on Unidirectional Carbon/Epoxy Composites. Mechanics of Composite Materials, 39(5), 387-392. doi:10.1023/b:mocm.0000003288.75552.cbTsukamoto, H. (2011). A mean-field micromechanical approach to design of multiphase composite laminates. Materials Science and Engineering: A, 528(7-8), 3232-3242. doi:10.1016/j.msea.2010.12.102Grozdanov, A., & Bogoeva-Gaceva, G. (2010). Carbon Fibers/Polyamide 6 Composites Based on Hybrid Yarns. Journal of Thermoplastic Composite Materials, 23(1), 99-110. doi:10.1177/0892705708095994Valenza, A., Fiore, V., & Di Bella, G. (2009). Effect of UD Carbon on the Specific Mechanical Properties of Glass Mat Composites for Marine Applications. Journal of Composite Materials, 44(11), 1351-1364. doi:10.1177/0021998309353215Mujika, F. (2006). On the difference between flexural moduli obtained by three-point and four-point bending tests. Polymer Testing, 25(2), 214-220. doi:10.1016/j.polymertesting.2005.10.006Shenghu Cao, Zhis WU, & Xin Wang. (2009). Tensile Properties of CFRP and Hybrid FRP Composites at Elevated Temperatures. Journal of Composite Materials, 43(4), 315-330. doi:10.1177/0021998308099224DUBOULOZMONNET, F., MELE, P., & ALBEROLA, N. (2005). Glass fibre aggregates: consequences on the dynamic mechanical properties of polypropylene matrix composites. Composites Science and Technology, 65(3-4), 437-443. doi:10.1016/j.compscitech.2004.09.012Kishi, H., Kuwata, M., Matsuda, S., Asami, T., & Murakami, A. (2004). Damping properties of thermoplastic-elastomer interleaved carbon fiber-reinforced epoxy composites. Composites Science and Technology, 64(16), 2517-2523. doi:10.1016/j.compscitech.2004.05.006Miyagawa, H., Mase, T., Sato, C., Drown, E., Drzal, L. T., & Ikegami, K. (2006). Comparison of experimental and theoretical transverse elastic modulus of carbon fibers. Carbon, 44(10), 2002-2008. doi:10.1016/j.carbon.2006.01.026TANIGUCHI, N., NISHIWAKI, T., HIRAYAMA, N., NISHIDA, H., & KAWADA, H. (2009). Dynamic tensile properties of carbon fiber composite based on thermoplastic epoxy resin loaded in matrix-dominant directions. Composites Science and Technology, 69(2), 207-213. doi:10.1016/j.compscitech.2008.10.002Bosze, E. J., Alawar, A., Bertschger, O., Tsai, Y.-I., & Nutt, S. R. (2006). High-temperature strength and storage modulus in unidirectional hybrid composites. Composites Science and Technology, 66(13), 1963-1969. doi:10.1016/j.compscitech.2006.01.020Pothan, L. A., George, C. N., John, M. J., & Thomas, S. (2009). Dynamic Mechanical and Dielectric Behavior of Banana-Glass Hybrid Fiber Reinforced Polyester Composites. Journal of Reinforced Plastics and Composites, 29(8), 1131-1145. doi:10.1177/0731684409103075Pothan, L. A., Potschke, P., Habler, R., & Thomas, S. (2005). The Static and Dynamic Mechanical Properties of Banana and Glass Fiber Woven Fabric-Reinforced Polyester Composite. Journal of Composite Materials, 39(11), 1007-1025. doi:10.1177/0021998305048737Jakubinek, M. B., Whitman, C. A., & White, M. A. (2009). Negative thermal expansion materials. Journal of Thermal Analysis and Calorimetry, 99(1), 165-172. doi:10.1007/s10973-009-0458-9Ito, T., Suganuma, T., & Wakashima, K. (1999). Journal of Materials Science Letters, 18(17), 1363-1365. doi:10.1023/a:1006694601493Pardini, L. C., & Gregori, M. L. (2010). Modeling elastic and thermal properties of 2.5D carbon fiber C/SiC hybrid matrix composites by homogenization method. Journal of Aerospace Technology and Management, 2(2), 183-194. doi:10.5028/jatm.2010.02026510Tsai, Y. I., Bosze, E. J., Barjasteh, E., & Nutt, S. R. (2009). Influence of hygrothermal environment on thermal and mechanical properties of carbon fiber/fiberglass hybrid composites. Composites Science and Technology, 69(3-4), 432-437. doi:10.1016/j.compscitech.2008.11.012Kia, H. G. (2008). Thermal Expansion of Sheet Molding Compound Materials. Journal of Composite Materials, 42(7), 681-695. doi:10.1177/002199830808859

    Surface modification of polypropylene substrates by UV photografting of methyl methacrylate (MMA) for improved surface wettability

    Full text link
    The final publication is available at Springer via http://dx.doi.org/10.1007/s10853-011-6056-9Despite polypropylene is one of the most used commodity plastics, its adhesion properties are remarkably restricted by its non-polar nature which leads to low wetting properties and, consequently, poor adhesion behavior. We report the use of ultraviolet photografting process of methyl methacrylate (MMA) monomer as an efficient chemical treatment for surface activation of polypropylene. Contact angle measurements are used for evaluating changes in polypropylene wetting properties together with surface free energy calculations. Chemical changes are showed in terms of the exposure time to UV radiation. Scanning electron microscopy has been used to evaluate topography changes in a qualitative way; atomic force microscopy has been used for a quantitative evaluation of surface changes in terms of roughness. The use of Fourier transformed infrared spectroscopy has revealed the nature of the chemical changes induced by the photografting process of MMA. © 2011 Springer Science+Business Media, LLC.This study is a part of the project IPT-310000-2010-037, "ECOTEXCOMP: Research and development of textile structures useful as reinforcement of composite materials with marked ecological character" funded by the "Ministerio de Ciencia e Innovacion," with an aid of 189540.20 euros, within the "Plan Nacional de Investigacion Cientifica, Desarrollo e Innovacion Tecnologica 2008-2011" and funded by the European Union through FEDER funds, Technology Fund 2007-2013, Operational Programme on R + D + i for and on behalf of the companies." Also, microscopy services at UPV are acknowledged for SEM and AFM support.Balart Gimeno, JF.; Fombuena Borrás, V.; Boronat Vitoria, T.; Reig Pérez, MJ.; Balart Gimeno, RA. (2012). Surface modification of polypropylene substrates by UV photografting of methyl methacrylate (MMA) for improved surface wettability. Journal of Materials Science. 47(5):2375-2383. doi:10.1007/s10853-011-6056-9S23752383475Novak I, Florian S (2001) J Mater Sci 36(20):4863. doi: 10.1023/A:1011895000500Sanchis MR et al (2007) J Appl Polym Sci 105(3):1077Sanchis R et al (2008) Int J Adhes Adhes 28(8):445Sanchis RM et al (2007) J Polym Sci Part B 45(17):2390Deng HP, Yang WT (2005) Eur Polym J 41(11):2685Lisboa P et al (2006) Appl Surf Sci 252(13):4397Wang YX et al (2005) Macromol Rapid Commun 26(2):87Xing CM, Deng JP, Yang WT (2005) Macromol Chem Phys 206(11):1106El Kholdi O et al (2004) J Appl Polym Sci 92(5):2803Piletsky SA et al (2000) Macromolecules 33(8):3092Susanto H, Ulbricht M (2007) Langmuir 23(14):7818Ulbricht M (1996) React Funct Polym 31(2):165Ulbricht M, Riedel M, Marx U (1996) J Membr Sci 120(2):239Villagra Di Carlo B, Carlos Gottifredi J, Claudio Habert A (2011) J Mater Sci 46(6):1850. doi: 10.1007/s10853-010-5012-4Yang GH et al (2001) Langmuir 17(1):211Kang ET et al (1996) J Mater Sci 31(5):1295. doi: 10.1007/BF00353109Zhu JW et al (2006) Macromol Chem Phys 207(1):75Kong LB, Deng JP, Yang WT (2006) Macromol Chem Phys 207(24):2311Xing CM, Deng JP, Yang WT (2002) Polym J 34(11):801Xing CM, Deng JP, Yang WT (2002) Polym J 34(11):809Janorkar AV, Metters AT, Hirt DE (2004) Macromolecules 37(24):9151Tan L, Deng JP, Yang WT (2004) Polym Adv Technol 15(9):523Deng JP, Yang WT, Ranby B (2001) J Appl Polym Sci 80(9):1426Deng JP, Yang WT (2005) J Appl Polym Sci 95(4):903Balart J et al (2010) J Appl Polym Sci 116(6):3256Kaczmarek H (1995) Polimery 40(6):333Khan MA, Shehrzade S, Hassan MM (2004) J Appl Polym Sci 92(1):18Ganan P, Mondragon I (2004) J Mater Sci 39(9):3121. doi: 10.1023/B:JMSC.0000025841.67124.c3Maerder E et al (2007) J Mater Sci 42(19):8047. doi: 10.1007/s10853-006-1311-1Zhao Y et al (2007) J Mater Sci 42(19):8287. doi: 10.1007/s10853-007-1624-8Xing CM, Deng JP, Yang WT (2005) J Appl Polym Sci 97(5):2026Srilatha T, Rao PR (2007) Asian J Chem 19(5):3755Moon JH et al. (2007) Progress Organ Coat 59(2):106Ramesh S et al (2007) Spectrochim Acta Part A 66(4–5):123

    Evaluating the environmental impact of a series of materials on an engineering part with the Sustainability tool of SolidWorks

    Full text link
    This article aims to study of the environmental effects of selecting different materials on an engineering part by using the Sustainability tool in SolidWorks. With this tool it is possible to assess the ecoefficiency of a particular material (or set of materials) in engineering applications.Montañés Muñoz, N.; Balart Gimeno, RA.; Quiles Carrillo, LJ. (2018). Evaluating the environmental impact of a series of materials on an engineering part with the Sustainability tool of SolidWorks. http://hdl.handle.net/10251/104572DE

    A comparison between the analytical solution of a single cantilever beam fixed at one end and the use of the finite elements method (FEM) with SolidWorks

    Full text link
    Este objeto de aprendizaje se enmarca en el contexto de la formación de los graduados en ingeniería y se centra en el estudio comparativo de la resolución de un problema simple de cálculo de una viga mediante el método analítico y el empleo de herramientas basadas en el método de los elementos finitos. Este artículo docente tiene por objeto comparar las diferencias entre ambos métodos y el potencial que ofrecen las herramientas basadas en el Método de los Elementos Finitos (FEA) como herramienta de ayuda en el proceso de desarrollo de partes y ensamblajes en ingeniería.Balart Gimeno, RA.; Quiles Carrillo, LJ.; Montañés Muñoz, N. (2018). A comparison between the analytical solution of a single cantilever beam fixed at one end and the use of the finite elements method (FEM) with SolidWorks. http://hdl.handle.net/10251/103904DE

    Interpretation of the results obtained by Finite Element Analysis (FEA) in SolidWorks

    Full text link
    El artículo se centra en la interpretación de los resultados que ofrece un software de análisis mediante el método de los elementos finitos (FEA) bajo la plataforma SolidWorks. Se pretende que el alumno realice un análisis crítico de los resultados.Balart Gimeno, RA.; Quiles Carrillo, LJ.; Montañés Muñoz, N. (2018). Interpretation of the results obtained by Finite Element Analysis (FEA) in SolidWorks. http://hdl.handle.net/10251/104404DE
    • …
    corecore